

Tetrahedron Letters 41 (2000) 5951-5955

TETRAHEDRON LETTERS

Acetylene cobalt complex and vinylsilane strategy in the synthesis of ciguatoxin (D)EF analog

Kazunobu Kira and Minoru Isobe*

Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan

Received 22 May 2000; revised 8 June 2000; accepted 9 June 2000

Abstract

A synthetic route to the (D)EF analog of ciguatoxin has been explored through acetylene cobalt complex and vinylsilane strategy. The central reactions in the synthesis are: (i) ether ring formation mediated by acetylene cobalt complex and (ii) decomplexation of the *endo*-acetylene cobalt complexes to vinylsilanes or olefins. Unusual rearrangement of epoxy-silane to allylic alcohol is also described. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: ciguatoxin; acetylene cobalt complex; hydrosilylation; vinylsilane.

We have been studying various synthetic methodologies applicable to the ciguatoxin (CTX1B, 1)¹ class of natural products, that have *syn/trans* stereochemistry of polycyclic oxy-ring systems. Our synthetic efforts have recently culminated in both enantiomeric forms of the left end segment (ABC)² or right middle segment, including the HIJK segment.³ These studies base their strategy on the chemistry of sugar acetylene⁴ and acetylene biscobalthexacarbonyl complex.⁵ Interesting synthetic efforts have been reported from other research groups lead by Hirama,⁶ Tachibana⁷ and Murai⁸ based upon various different methodologies.⁹

^{*} Corresponding author. Tel: +81-52-789-4109; fax: +81-52-789-4111; e-mail: isobem@agr.nagoya-u.ac.jp

This communication includes the synthesis of the left middle segment (D)EF in the form of 2 to explore our methodologies, which commences from a D-hexopyranose derivative (D' ring) to extend the carbon chain toward the E/F ring and subsequent cyclization to the medium-sized ether rings. Retrosynthetic analysis is illustrated in Scheme 1, where the critical nine-membered ring cyclization would occur from the precursor propargylic cation **3** that is stabilized by an acetylene cobalt complex.¹⁰ This eneyne could be derived from the allylic alcohol **4**. This allylic alcohol should be transformed from the complex **6** via vinylsilane **5**. Similar cyclization of the seven-membered ring from the precursor propargylic cation **7** again took the form of the acetylene cobalt complex. A D-pyranose derivative would have access to this starting material, as reported previously.¹¹

Scheme 1. Retrosynthesis of (D)EF analog 2

An optically active compound 8 (preparable from triacetyl-D-glucal in 9 steps¹¹) was selected as a template to extend the carbon chain as analyzed in retrosynthesis (Scheme 1). The lithium acetylide of 8 was added to the protected 3-oxy-propanal to give 9, which was converted into cobalt complex 10. The crucial cyclization happened by treatment with *p*-toluenesulfonic acid to give 11 in syn/trans manner as a single isomer.¹² Hydrosilylation¹³ of 11 with triethylsilane in hot toluene was followed by oxidative deprotection of the *p*-methoxybenzyl group with DDQ to afford 12. The epoxidation of the silvl olefin in 12 was not stereoselective with mCPBA, but it gave a mixture of α - and β -epoxides (5:3) without touching the other olefins. Only one of these epoxides, the β -epoxide, turned out to be convertible to the allylic alcohol by treatment with BF₃·OEt₂ in a separate experiment.¹⁴ Finally, β -epoxide was stereoselectively prepared from 12, firstly by oxidation to the carboxylic acid 13, secondly by iodo-lactonization to 14 and its DIBAL reduction to afford the β -epoxide 15. Peterson olefination of this aldehyde 15 with 3-lithio-1,3bis-(triisopropylsilyl)-propyne¹⁵ gave largely the *cis* ene-yne **16**. Treatment of this epoxysilane **16** with $BF_3 \cdot OEt_2$ yielded the allylic alcohol 17 in 80%. Now the configuration of C-8 with the hydroxyl group was inverted by Mitsunobu reaction to convert into 18. Addition of the lithium acetylide of 18 to phenylpropanal provided a propargylic alcohol, which was further converted into cobalt complex 19. Its cyclization was performed by simple treatment with BF₃·OEt₂ at room temperature to afford 20 in 70% yield as a single stereoisomer. Syn stereochemistry of this product was shown by NOE experiments.¹⁶ This cobalt complex was hydrosilylated into the vinylsilane **21** by simple heating with triethylsilane¹³ (Scheme 2).

As shown in Scheme 3, an alternative synthesis of a similar compound was achieved. Addition of the lithium acetylide of **18** to a protected propanal successively converted it into the corresponding acetylene cobalt complex **22**, which was similarly cyclized with $BF_3 \cdot OEt_2$ at a room temperature to give **23** in 81% yield as a single stereoisomer. Finally, the cobalt complex was decomplexed into the corresponding olefin **24** by simple heating with tributyltin hydride.¹³

Scheme 2. (a) *n*-BuLi/THF; (b) PPS/MeOH, 80% in two steps; (c) $Co_2(CO)_8/CH_2Cl_2$, 88%; (d) *p*TsOH·H₂O/CH₂Cl₂, rt, 90%; (e) Et₃SiH/toluene, 70°C; (f) DDQ, 80% in two steps; (g) Jones reagent; (h) I(collidine)_2PF₆/CH₂Cl₂, 77% in two steps; (i) DIBAL; (j) DBU, 85% in two steps; (k) *n*-BuLi/THF, -78°C to rt, 77%; (l) BF₃·OEt₂/CH₂Cl₂, 80%; (m) TBAF/THF, quant.; (n) PPh₃, DEAD, benzoic acid, quant.; (o) K₂CO₃, MeOH; (p) EVE, PPTS, 76% in two steps; (q) *n*-BuLi; (r) PPTS, 87% in two steps; (s) $Co_2(CO)_8/CH_2Cl_2$, 78%; (t) BF₃·OEt₂/CH₂Cl₂, rt, 70%; (u) Et₃SiH/toluene, 70°C, quant.

Although the junction protons of this particular compound have considerable overlap with each other and no NOE data are available to prove the syn/trans stereochemistry of 24 (Scheme 3).

Scheme 3. (a) *n*-BuLi; (b) PPTS/MeOH, 80% in two steps; (c) $Co_2(CO)_8/CH_2Cl_2$, 87%; (d) BF₃·OEt₂/CH₂Cl₂, rt, 81%; (e) *n*-Bu₃SnH/toluene, 62%

Thus, we succeeded in the synthesis of the (D)EF analogs (21 and 24) of ciguatoxin 1 using acetylene cobalt complex and the unusual rearrangement of epoxysilane 15 to allylalcohol 16. Further efforts directed toward the total synthesis of ciguatoxin are in progress in our laboratory.

Acknowledgements

This work was supported by Grant-in-Aid from Ministry of Education, Science, Sports and Culture of Japan. One of the authors, K.K. thanks JSPS Research Fellowships for Young Scientists.

References

- 1. Satake, M.; Morohashi, A.; Oguri, H.; Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am. Chem. Soc. 1997, 119, 11325 and references therein.
- (a) Hosokawa, S.; Isobe, M. Synlett 1995, 1179. (b) Hosokawa, S.; Isobe, M. Synlett 1996, 351. (c) Hosokawa, S.; Isobe, M. J. Org. Chem. 1999, 64, 37. (d) Saeeng, R.; Isobe, M. Tetrahedron Lett. 1999, 40, 1911.
- 3. (a) Liu, T.-Z.; Isobe, M. Synlett 2000, 587; (b) Liu, T.-Z.; Isobe, M. Tetrahedron, in press.
- 4. Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. J. Chem. Soc., Chem. Commun. 1998, 2665.
- (a) Tanaka, S.; Tsukiyama, T.; Isobe, M. *Tetrahedron Lett.* **1993**, *34*, 5757. (b) Tanaka, S.; Isobe, M. *Tetrahedron* **1994**, *50*, 5633. (c) Tanaka, S.; Isobe, M. *Tetrahedron Lett.* **1994**, *35*, 7801. (d) Tanaka, S.; Tatsuta, T.; Yamashita, O.; Isobe, M. *Tetrahedron* **1994**, *50*, 12883. (e) Isobe, M.; Yenjai, C.; Tanaka, S. *Synlett* **1994**, 916.
- (a) Oishi, T.; Nagumo, Y.; Hirama, M. Chem. Commun. 1998, 1041. (b) Maeda, K.; Oishi, T.; Oguri, H.; Hirama, M. Chem. Commun. 1999, 1063 and references therein.
- 7. (a) Sasaki, M.; Fuwa, H.; Ishikawa, M.; Tachibana, K. Org. Lett. 1999, 1, 1075. (b) Inoue, M.; Sasaki, M.; Tachibana, K. Tetrahedron 1999, 55, 10949 and references therein.
- 8. (a) Oka, T.; Murai, A. *Tetrahedron* 1998, 54, 1. (b) Oka, T.; Fujiwara, K.; Murai, A. *Tetrahedron* 1998, 54, 21 and references therein.
- 9. (a) Alvarez, E.; Delgado, M.; Diaz, M. T.; Hanxing, L.; Perez, R.; Martin, J. D. *Tetrahedron Lett.* 1996, *37*, 2865.
 (b) Leeuwenburgh, M. A.; Kulker, C.; Overkleeft, H. S.; van der Marel, G. A.; van Boom, J. H. *Synlett* 1999, *12*, 1945.
- 10. Connor, R. E.; Nicholas, K. M. J. Organomet. Chem. 1977, 125, C45.
- 11. The starting material 8 was prepared in nine steps from triacetyl-D-glucal A.

a) EtOH BF₃·OEt₂/CH₂Cl₂ 77%. b) Et₃N/MeOH-H₂O quant. c) TsCl, Py/CH₂Cl₂. d) Nal/acetone reflux. e) EVE, PPTS/CH₂Cl₂ 87% in 2 steps. f) Me₃SiC=CLi/THF-HMPA r.t. g) K₂CO₃/MeOH 70% in 2 steps. h) Me₃SiCH₂CH₂CH=CH₂ BF₃·OEt₂/CH₂Cl₂. i) EVE, PPTS/CH₂Cl₂ 92% in 2 steps.

- 12. Isobe, M.; Hosokawa, S.; Kira, K. Chem. Lett. 1996, 473.
- 13. Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 2609.
- 14. Acid treatment of α and β -epoxysilane gives ketone and allylic alcohol, respectively.

- 15. Corey, E. J.; Rücker, C. Tetrahedron Lett. 1982, 23, 719.
- 16. Stereochemistry of cyclic products is governed by reaction conditions; the *anti* isomer is the kinetic product, while the *syn* isomer is the thermodynamic product.

